
From Lost to the River: Embracing Sort Proliferation

Gaëtan Gilbert, Pierre-Marie Pédrot, Matthieu Sozeau, Nicolas Tabareau
INRIA

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 1 / 17

Types, types, types

Type theory is about types!

It’s all about assigning types to terms.

In MLTT and its variants, types are also terms.

So you need also need to give types to types!

The type of a type is a universe.

⊢ A : Type ∼ A is a type

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 2 / 17

Types, types, types

Type theory is about types!

It’s all about assigning types to terms.

In MLTT and its variants, types are also terms.

So you need also need to give types to types!

The type of a type is a universe.

⊢ A : Type ∼ A is a type

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 2 / 17

Types, types, types

Type theory is about types!

It’s all about assigning types to terms.

In MLTT and its variants, types are also terms.

So you need also need to give types to types!

The type of a type is a universe.

⊢ A : Type ∼ A is a type

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 2 / 17

Types, types, types

Type theory is about types!

It’s all about assigning types to terms.

In MLTT and its variants, types are also terms.

So you need also need to give types to types!

The type of a type is a universe.

⊢ A : Type ∼ A is a type

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 2 / 17

Quis custodiet ipsos custodes?

What is the type of the universe?

Martin-Löf ’71

⊢ Type : Type

Girard, ’71 and 15 minutes
MLTT with the above rule is inconsistent.

Standard solution

⊢ Typen : Typen+1 for n ∈ N

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 3 / 17

Quis custodiet ipsos custodes?

What is the type of the universe?

Martin-Löf ’71

⊢ Type : Type

Girard, ’71 and 15 minutes
MLTT with the above rule is inconsistent.

Standard solution

⊢ Typen : Typen+1 for n ∈ N

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 3 / 17

Quis custodiet ipsos custodes?

What is the type of the universe?

Martin-Löf ’71

⊢ Type : Type

Girard, ’71 and 15 minutes
MLTT with the above rule is inconsistent.

Standard solution

⊢ Typen : Typen+1 for n ∈ N

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 3 / 17

Quis custodiet ipsos custodes?

What is the type of the universe?

Martin-Löf ’71

⊢ Type : Type

Girard, ’71 and 15 minutes
MLTT with the above rule is inconsistent.

Standard solution

⊢ Typen : Typen+1 for n ∈ N

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 3 / 17

Meanwhile in the Real WorldTM

This might look innocuous in theory, but it’s a pain in practice.

You have to explicitly set a level n for every single Type
If you need one intermediate universe in the middle of a proof...

⇝ Better have used BASIC line numbering!
Martin-Löf forbid that you want to use a term at two different levels

⇝ Twice as much pleasure of code writing!

It’s a very anti-modular feature!

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 4 / 17

Meanwhile in the Real WorldTM

This might look innocuous in theory, but it’s a pain in practice.

You have to explicitly set a level n for every single Type
If you need one intermediate universe in the middle of a proof...

⇝ Better have used BASIC line numbering!
Martin-Löf forbid that you want to use a term at two different levels

⇝ Twice as much pleasure of code writing!

It’s a very anti-modular feature!

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 4 / 17

Meanwhile in the Real WorldTM

This might look innocuous in theory, but it’s a pain in practice.

You have to explicitly set a level n for every single Type
If you need one intermediate universe in the middle of a proof...

⇝ Better have used BASIC line numbering!
Martin-Löf forbid that you want to use a term at two different levels

⇝ Twice as much pleasure of code writing!

It’s a very anti-modular feature!

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 4 / 17

Well-know issues imply well-known solutions

Thankfully, it’s a well-known issue

1 Floating universes aka (global) algebraic constraints

S ⊨ i < j

2 Some flavour of universe polymorphism aka bound levels

⊢ M : ∀̃i j. Typei → Typej+1

3 More exotic stuff: template poly, crude but effective...

Not mutually exclusive! Coq uses 1 + 2 + template poly.

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 5 / 17

Well-know issues imply well-known solutions

Thankfully, it’s a well-known issue

1 Floating universes aka (global) algebraic constraints

S ⊨ i < j

2 Some flavour of universe polymorphism aka bound levels

⊢ M : ∀̃i j. Typei → Typej+1

3 More exotic stuff: template poly, crude but effective...

Not mutually exclusive! Coq uses 1 + 2 + template poly.

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 5 / 17

Unexpected Prequel

Modularity is restored, the Galaxy is at peace...

A video game by Thierry Coquand
© INRIA 1984

Types designed by Per Martin-Löf
...

BREAKING NEWS
Nope! There are alternate universes out there.

Rising from the CIC tradition, we had Prop for decades in Coq.

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 6 / 17

Unexpected Prequel

Modularity is restored, the Galaxy is at peace...

A video game by Thierry Coquand
© INRIA 1984

Types designed by Per Martin-Löf
...

BREAKING NEWS
Nope! There are alternate universes out there.

Rising from the CIC tradition, we had Prop for decades in Coq.

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 6 / 17

Propping up the Scene

Prop: a mishmash of features

Impredicative: Πx : A.B : Prop as long as B : Prop
100% compatible with proof-irrelevance (but not irrelevant)
Erasable through extraction

Due to these features, elimination of Prop inductives is tricky

Prop to Prop is fine
Prop to Type must satisfy singleton elimination

This prevents (naive) universe polymorphism over Prop

Inductive Box (A : Typei) : Typej := box : A → Box A

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 7 / 17

Propping up the Scene

Prop: a mishmash of features

Impredicative: Πx : A.B : Prop as long as B : Prop
100% compatible with proof-irrelevance (but not irrelevant)
Erasable through extraction

Due to these features, elimination of Prop inductives is tricky

Prop to Prop is fine
Prop to Type must satisfy singleton elimination

This prevents (naive) universe polymorphism over Prop

Inductive Box (A : Typei) : Typej := box : A → Box A

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 7 / 17

Propping up the Scene

Prop: a mishmash of features

Impredicative: Πx : A.B : Prop as long as B : Prop
100% compatible with proof-irrelevance (but not irrelevant)
Erasable through extraction

Due to these features, elimination of Prop inductives is tricky

Prop to Prop is fine
Prop to Type must satisfy singleton elimination

This prevents (naive) universe polymorphism over Prop

Inductive Box (A : Typei) : Typej := box : A → Box A

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 7 / 17

It’s only the beginning

We have to duplicate everything between Prop and Type

All stdlib basic inductives come in two flavours (e.g. ∃ vs. Σ)
Mitigated by Prop ⊆ Type ⇝ only the return sort matters
Weird unification artifacts still

A new opponent has appeared
... but things went really south since the introduction of SProp

Now we need at least three variants
... but SProp ̸⊆ Type ⇝ 2n variants for n parameters
Unification not only weird, but plain unsound

So long for modularity!

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 8 / 17

It’s only the beginning

We have to duplicate everything between Prop and Type

All stdlib basic inductives come in two flavours (e.g. ∃ vs. Σ)
Mitigated by Prop ⊆ Type ⇝ only the return sort matters
Weird unification artifacts still

A new opponent has appeared
... but things went really south since the introduction of SProp

Now we need at least three variants
... but SProp ̸⊆ Type ⇝ 2n variants for n parameters
Unification not only weird, but plain unsound

So long for modularity!

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 8 / 17

It’s only the beginning

We have to duplicate everything between Prop and Type

All stdlib basic inductives come in two flavours (e.g. ∃ vs. Σ)
Mitigated by Prop ⊆ Type ⇝ only the return sort matters
Weird unification artifacts still

A new opponent has appeared
... but things went really south since the introduction of SProp

Now we need at least three variants
... but SProp ̸⊆ Type ⇝ 2n variants for n parameters
Unification not only weird, but plain unsound

So long for modularity!

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 8 / 17

What now?

There is no reason to stop at three hierarchies.

Fibrant vs. strict universes (HoTT)
Pure vs. impure universes (Exceptional Theory, MTT, ...)
Setoid / parametric / cubic / blue-haired ω-potatoid universes

Resistance is futile. Let’s embrace sort proliferation!

with the dark powers of sort polymorphism

All universes in a single proof assistant

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 9 / 17

What now?

There is no reason to stop at three hierarchies.

Fibrant vs. strict universes (HoTT)
Pure vs. impure universes (Exceptional Theory, MTT, ...)
Setoid / parametric / cubic / blue-haired ω-potatoid universes

Resistance is futile. Let’s embrace sort proliferation!

with the dark powers of sort polymorphism

All universes in a single proof assistant
P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 9 / 17

Land of the Free

It’s a Revolution
Variables!

q ::= α | Type | Prop | SProp | . . . (sort qualities)
M ::= Sortq

ℓ (ℓ level, q quality) | . . . (terms)

No algebraic structure on qualities
Usual universes become notations

Typeℓ := SortType
ℓ Prop := SortProp

0 SProp := SortSProp
0

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 10 / 17

Land of the Free

It’s a Revolution
Variables!

q ::= α | Type | Prop | SProp | . . . (sort qualities)
M ::= Sortq

ℓ (ℓ level, q quality) | . . . (terms)

No algebraic structure on qualities
Usual universes become notations

Typeℓ := SortType
ℓ Prop := SortProp

0 SProp := SortSProp
0

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 10 / 17

Give me the Rules

⊢ Sortq
ℓ : Typeℓ+1

⊢ SortProp
i ≡ SortProp

j ⊢ SortSProp
i ≡ SortSProp

j

⊢ A : SortqA
ℓA

x : A ⊢ B : SortqB
ℓB

⊢ Πx : A.B : SortqB
ℓA ∨ ℓB

Type always classifies sorts
Impredicativity implemented as level-irrelevance
Product rule is call-by-name-ish / impredicative-friendly

These rules are compatible with all our intended instances

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 11 / 17

Give me the Rules

⊢ Sortq
ℓ : Typeℓ+1

⊢ SortProp
i ≡ SortProp

j ⊢ SortSProp
i ≡ SortSProp

j

⊢ A : SortqA
ℓA

x : A ⊢ B : SortqB
ℓB

⊢ Πx : A.B : SortqB
ℓA ∨ ℓB

Type always classifies sorts
Impredicativity implemented as level-irrelevance
Product rule is call-by-name-ish / impredicative-friendly

These rules are compatible with all our intended instances

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 11 / 17

Qot qot quantum

We extend Coq universe polymorphism with sort polymorphism.

c : ∀(α1 . . . αn ∈ q). ∀(i1 . . . im ∈ ℓ | S).A

c : ∀(α1 . . . αn ∈ q). ∀(i1 . . . im ∈ ℓ | S).A

S0 ⊨ S{⃗i := ℓ⃗}

S0 | Γ ⊢ c{q1 . . . qn | ℓ1 . . . ℓm} : A{α⃗ := q⃗, i⃗ := ℓ⃗}

Prenex, external polymorphism
Generalization of universe polymorphism, compatible with it
No constraint system on sorts! (†)

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 12 / 17

Qot qot quantum

We extend Coq universe polymorphism with sort polymorphism.

c : ∀(α1 . . . αn ∈ q). ∀(i1 . . . im ∈ ℓ | S).A

c : ∀(α1 . . . αn ∈ q). ∀(i1 . . . im ∈ ℓ | S).A

S0 ⊨ S{⃗i := ℓ⃗}

S0 | Γ ⊢ c{q1 . . . qn | ℓ1 . . . ℓm} : A{α⃗ := q⃗, i⃗ := ℓ⃗}

Prenex, external polymorphism
Generalization of universe polymorphism, compatible with it
No constraint system on sorts! (†)

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 12 / 17

Don’t be so Negative
What about inductive types?

We have a scheme that is compatible with non-sort polymorphic code.
Introduction rules for inductive types are unchanged.
The tricky part is elimination: we generalize singleton criteria

M : I : Sortq and T : Sortr ⊢ case M return T with . . . allowed?

q r
α {α}

Type any

Prop any if I singleton (finite quality check)
{Prop, SProp} otherwise

SProp any if I empty
{SProp} otherwise

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 13 / 17

Don’t be so Negative
What about inductive types?

We have a scheme that is compatible with non-sort polymorphic code.
Introduction rules for inductive types are unchanged.
The tricky part is elimination: we generalize singleton criteria

M : I : Sortq and T : Sortr ⊢ case M return T with . . . allowed?

q r
α {α}

Type any

Prop any if I singleton (finite quality check)
{Prop, SProp} otherwise

SProp any if I empty
{SProp} otherwise

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 13 / 17

Don’t be so Negative
What about inductive types?

We have a scheme that is compatible with non-sort polymorphic code.
Introduction rules for inductive types are unchanged.
The tricky part is elimination: we generalize singleton criteria

M : I : Sortq and T : Sortr ⊢ case M return T with . . . allowed?

q r
α {α}

Type any

Prop any if I singleton (finite quality check)
{Prop, SProp} otherwise

SProp any if I empty
{SProp} otherwise

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 13 / 17

Final product

Type Theory is at peace.

Sort-poly is a conservative extension (like univ-poly)
... just a glorified copy-paste!
In particular, it doesn’t change the consistency of the ambient theory
It blends easily with univ-poly

Proof.
All typing rules are stable by substitution with ground qualities.

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 14 / 17

Final product

Type Theory is at peace.

Sort-poly is a conservative extension (like univ-poly)
... just a glorified copy-paste!
In particular, it doesn’t change the consistency of the ambient theory
It blends easily with univ-poly

Proof.
All typing rules are stable by substitution with ground qualities.

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 14 / 17

Unexpected Byproduct

template poly

a primitive attempt at univ-poly
a neverending stream of False
Hard to specify and thus not well-understood

We can now model it with cumulative inductives + sort-poly!

Template-poly inductives are:
polymorphic cumulative types whose universe levels are all irrelevant
levels must satisfy a syntactic “inferability” criterion
template parameters are sort-poly with the same sort as inductive

TL;DR: template poly has an intended semantics (†)

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 15 / 17

Unexpected Byproduct

template poly

a primitive attempt at univ-poly
a neverending stream of False
Hard to specify and thus not well-understood

We can now model it with cumulative inductives + sort-poly!

Template-poly inductives are:
polymorphic cumulative types whose universe levels are all irrelevant
levels must satisfy a syntactic “inferability” criterion
template parameters are sort-poly with the same sort as inductive

TL;DR: template poly has an intended semantics (†)

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 15 / 17

What is to be done

The sort-poly infrastructure is now part of Coq unification (8.17).
Part of the kernel term representation
Used to delay sort assignment in universe unification
Dedicated handling of Prop ⊆ Sortq ⊆ Type
Solves longstanding plaguing issues with SProp and Prop

No corresponding typing rules in kernel.
No quantification on constants yet
Kernel fails on unbound sort qualities (like evars)
In the process of being implemented

The time for multiverse expansion has come.

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 16 / 17

What is to be done

The sort-poly infrastructure is now part of Coq unification (8.17).
Part of the kernel term representation
Used to delay sort assignment in universe unification
Dedicated handling of Prop ⊆ Sortq ⊆ Type
Solves longstanding plaguing issues with SProp and Prop

No corresponding typing rules in kernel.
No quantification on constants yet
Kernel fails on unbound sort qualities (like evars)
In the process of being implemented

The time for multiverse expansion has come.

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 16 / 17

What is to be done

The sort-poly infrastructure is now part of Coq unification (8.17).
Part of the kernel term representation
Used to delay sort assignment in universe unification
Dedicated handling of Prop ⊆ Sortq ⊆ Type
Solves longstanding plaguing issues with SProp and Prop

No corresponding typing rules in kernel.
No quantification on constants yet
Kernel fails on unbound sort qualities (like evars)
In the process of being implemented

The time for multiverse expansion has come.

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 16 / 17

What is to be done

The sort-poly infrastructure is now part of Coq unification (8.17).
Part of the kernel term representation
Used to delay sort assignment in universe unification
Dedicated handling of Prop ⊆ Sortq ⊆ Type
Solves longstanding plaguing issues with SProp and Prop

No corresponding typing rules in kernel.
No quantification on constants yet
Kernel fails on unbound sort qualities (like evars)
In the process of being implemented

The time for multiverse expansion has come.

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 16 / 17

Scribitur ad narrandum, non ad probandum

Thanks for your attention.

P.-M. Pédrot & al. (INRIA) Embracing Sort Proliferation 12/06/2023 17 / 17

